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Why are we still doing Numerical Linear Algebra?

• Solving

• Many mathematical modeling problems reduce to these problems
• Good libraries available
• Why is it still hard?

• Problems get bigger
• Parallel machines are hard to program efficiently
• Computer memory hierarchies
• How do we choose the best algorithms algorithm among many?

• New applications need new algorithms
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Fastest Computer Over Time

A computation that took 1 full year to complete 
in 1980 can today be done in ~ 27 seconds!
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LAPACK

• Linear Algebra library written in Fortran 77 (Fortran 90, 
C and C++ versions also available).

• Combine algorithms from LINPACK and EISPACK into 
a single package.

• Efficient on a wide range of computers (RISC, Vector, 
SMPs).

• User interface similar to LINPACK (Single, Double, 
Complex, Double Complex).

• Built atop level 1, 2, and 3 BLAS for high performance, 
clarity, modularity and portability.

http://www.netlib.org/lapack
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LAPACK: Features

• Basic problems:
• Linear systems:
• Least squares:
• Singular value decomposition:
• Eigenvalues and eigenvectors:

• LAPACK does not provide routines for structured problems 
or general sparse matrices (i.e. sparse storage formats such 
as compressed-row, -column, -diagonal, skyline ...).

• LAPACK Users’ Guide, Third Edition (1999)
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LAPACK: Highlights of Version 3

• Speed
• Faster routines for the Singular Value Decomposition (SVD)

• 1000x1000 dense SVD 6.3 times faster than Version 2 on an 
Intel Pentium 3

• 1000x1000 dense SVD 16.8 times faster than Version 2 on an 
IBM Power 3

• Faster routines for Least Squares Problem  minx ||Ax-b||2
with rank deficient A (uses SVD)

• 1000x1000 problem 8.5 faster than Version 2 on an Alpha EV6

• Reliability, including error bounds for everything
• Now available for generalized eigenvalue problem Ax = λBx
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ScaLAPACK: Structure of the Software

ScaLAPACK

BLAS

LAPACK BLACS

PVM/MPI/...

PBLAS
Global
Local

platform specific

Clarity,modularity, performance 
and portability. Atlas can be 
used for automatic tuning.

Clarity,modularity, performance 
and portability. Atlas can be 
used for automatic tuning.

Version 1.7 is now 
available.

Version 1.7 is now 
available.

Linear systems, least 
squares, singular 

value decomposition, 
eigenvalues.

Linear systems, least 
squares, singular 

value decomposition, 
eigenvalues.

Communication 
routines targeting 

linear algebra 
operations.

Communication 
routines targeting 

linear algebra 
operations.

Parallel BLAS.Parallel BLAS.

http://acts.nersc.gov/scalapack
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ScaLAPACK: Goals

• Efficiency
• Optimized computation and communication engines
• Block-partitioned algorithms (Level 3 BLAS) for good node performance

• Reliability
• Whenever possible, use LAPACK algorithms and error bounds.

• Scalability
• As the problem size and number of processors grow
• Replace LAPACK algorithm that did not scale (new ones into LAPACK)

• Portability
• Isolate machine dependencies to BLAS and the BLACS

• Flexibility
• Modularity: build rich set of linear algebra tools (BLAS, BLACS, PBLAS)

• Ease-of-Use
• Calling interface similar to LAPACK
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ScaLAPACK: Two-Dimensional Block-Cyclic Distribution
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5.14.13.12.11.1 oooo

CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )

IF ( MYROW.EQ.0 .AND. MYCOL.EQ.0 ) THEN

A(1) = 1.1; A(2) = -2.1; A(3) = -5.1;

A(1+LDA) = 1.2; A(2+LDA) = 2.2; A(3+LDA) = -5.2;

A(1+2*LDA) = 1.5; A(2+3*LDA) = 2.5; A(3+4*LDA) = -5.5;

ELSE IF ( MYROW.EQ.0 .AND. MYCOL.EQ.1 ) THEN

A(1) = 1.3; A(2) = 2.3; A(3) = -5.3;

A(1+LDA) = 1.4; A(2+LDA) = 2.4; A(3+LDA) = -5.4;

ELSE IF ( MYROW.EQ.1 .AND. MYCOL.EQ.0 ) THEN

A(1) = -3.1; A(2) = -4.1;

A(1+LDA) = -3.2; A(2+LDA) = -4.2;

A(1+2*LDA) = 3.5; A(2+3*LDA) = 4.5;

ELSE IF ( MYROW.EQ.1 .AND. MYCOL.EQ.1 ) THEN

A(1) = 3.3; A(2) = -4.3;

A(1+LDA) = 3.4; A(2+LDA) = 4.4;

END IF

oooo
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5x5 matrix partitioned into 2x2 blocks and distributed into a 2x2 grid

LDA is the leading dimension of the local array, used in the array 
descriptor (an array that simulates an object in Fortran)
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ScaLAPACK: Achieving High Performance

• Use the right number of processors
• Rule of thumb: P=MxN/106 for an MxN matrix.  This provides a local 

matrix of size approximately 1000-by-1000
• Do not try to solve a small problem on too many processors
• Do not exceed physical memory

• Use an efficient data distribution.
• Block size (i.e., MB,NB) = 64
• Square processor grid: Prow = Pcolumn

• Use efficient machine-specific BLAS (not the Fortran77 reference 
implementation from www.netlib.org) and BLACS (nondebug, 
BLACSDBGLVL=0 in Bmake.inc)

Distributed-Memory Computer
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ScaLAPACK: Two Applications

Induced current (white arrows) and charge density 
(colored plane and gray surface) in crystallized 
glycine due to an external field (Louie, Yoon, 

Pfrommer and  Canning).

Cosmic Microwave Background Analysis, 
BOOMERanG collaboration, MADCAP 

code (Apr. 27, 2000).



On line tutorial: http://acts.nersc.gov/scalapack/hands-on/main.html
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Selecting a Direct Solver for Ax=b

• Use a direct solver if
• Time and storage space acceptable
• Iterative methods don’t converge
• Many b’s for same A

• Criteria for choosing a direct solver
• Symmetric positive definite (SPD)
• Symmetric
• Symmetric-pattern
• Unsymmetric

• Row/column ordering schemes available
• MMD, AMD, ND, graph partitioning

• Hardware
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Steps Required by a Typical Sparse Solver

1. An ordering step that reorders the rows and columns of 
the matrix (to reduce fill-in the factors or to produce a 
special structure, such as a block tridiagonal form).

2. An analysis step or symbolic factorization to determine 
the nonzero structures and create suitable data structures 
for the L and U factors.

3. A numerical factorization to compute the L and U factors.
4. A solve step that performs forward and back substitution 

using the L and U factors.
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Three Forms of Cholesky Factorization

blue: computed and accessed, red: current column, green: updated

row Cholesky column Cholesky
left-looking

submatrix Cholesky
right-looking
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Frontal Methods

• Origins in finite-element problems

• Gaussian elimination

• For nonelemental problems, the rows of A are added into 
the frontal matrix one at a time

• Separate fronts can be handled simultaneously
• Sparsity preserving ordering
• Multifrontal Methods
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• The elimination can be 
performed when all these 
terms are fully summed

• The assembly and elimination 
can be interleaved

• The intermediate work is 
performed in a dense matrix, 
the frontal matrix

• The elimination can be 
performed when all these 
terms are fully summed

• The assembly and elimination 
can be interleaved

• The intermediate work is 
performed in a dense matrix, 
the frontal matrix
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Direct Methods: Serial Implementations

HSLMA67

HSLSymMultifrontalMA57

DavisUnsymMultifrontalUMFPACK

LiUnsymLeft-lookingSuperLU

NgSPDLeft-lookingSuperLLT

AshcraftSym and Sym-patLeft-lookingSPOOLES

GeorgeSPDLeft-lookingSPARSPAK

KundertUnsymRight-lookingSPARSE

HSLUnsymRight-lookingMA48

HSLUnsymFrontalMA42

HSLSym-patMultifrontalMA41

ContactScopeTechniqueCode

HSL: Harwell Subroutine Library, http://www.cse.circ.ac.uk/Activity/HSL
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Direct Methods: Shared Memory Implementations

LiUnsymLeft-lookingSuperLU_MT

AshcraftSym and Sym-patLeft-lookingSPOOLES

SchenkSym-patLeft-right lookingPARDISO

ZlatevUnsymRight-lookingPARASPAR

NgSPDLeft-lookingPanelLLT

HSLSym-patMultifrontalMA41

LucasSymMultifrontalDMF

RothbergSPDLeft-lookingCholesky

ContactScopeTechniqueCode
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Direct Methods: Distributed Memory Implementations

YangUnsymRight-lookingS+

LiUnsymRight-lookingSuperLU_DIST

AshcraftSym and Sym-patLeft-lookingSPOOLES

GuptaSPDMultifrontalPSPASES

CEASPDLeft-right lookingPaStiX

AmestoySym and Sym-patMultifrontalMUMPS

LucasSymMultifrontalDMF

RaghavanSPDMultifrontalCAPSS

ContactScopeTechniqueCode

Analysis and Comparison of Two General Sparse Solvers for Distributed Memory Computers,
Amestoy, Duff, L'Excellent and Li, ACM TOMS, 27:388-421, 2001.
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MUMPS

• Distributed Multifrontal Solver
• F90 and MPI based 
• Stability based on partial pivoting 
• Dynamic Distributed Scheduling to accomodate both 

numerical fill-in and multi-user environment
• Use of BLAS, LAPACK, ScaLAPACK 

Multifrontal Massively Parallel Sparse Direct Solver: http://www.enseeiht.fr/lima/apo/mumps
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MUMPS: Main Features

• Solution of linear systems with 
• symmetric positive definite matrices
• general symmetric matrices
• general unsymmetric matrices 

• Parallel factorization and solve phases 
( uniprocessor version also available) 

• Iterative refinement and backward error analysis
• Input matrix in 

• assembled format 
• distributed assembled format 
• elemental format 

• Null space functionalities (rank detection and null space basis)
• Schur complement matrix 
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SuperLU

• Solves Ax=b on by sparse Gaussian elimination
• Sequential, SMP and distributed memory (MPI) 

implementations 
• Suitable for general sparse A, nonsymmetric, real or 

complex
• Performance depends strongly on 

• Sparsity structure, good if  (number of flops) / (number of 
nonzeros) is large

• Ordering of equations and unknowns (controls fill-in, 
parallelism)

http://acts.nersc.gov/superlu
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SuperLU: Unsymmetric Supernode

• Exploit dense submatrices in the 
L and U factors of PA=LU

• Permit use of level 3 BLAS
• Reduce ineficient indirect 

addressing
• Reduce symbolic time by 

traversing a coarser grid
• Supernode panel factorization

(left-looking)
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SuperLU: Performance Highlights

• Sequential: up to 40% of machine peak Mflop rate on 
IBM Power 2 and MIPS R8K for matrices 
• EX11 (3D CFD, n=16614, nonzeros/row = 66)
• RAEFSKY4 (buckling of a container, n=19779

nonzeros/row = 67) 
• VAVASIS3,  2D PDE, n=41092, nonzeros/row = 41)

• Shared Memory 
• 8-10 times speedup on 18 PE SGI Origin for the above 3 

matrices
• 17% to 33% of machine peak Mflop rate for EX11 on

AlphaServer 8400 (8 PEs), Origin 2000 (20 PEs), Power 
Challenge (12 PEs), Cray J90 (16 PEs)



03/25/2002 High Performance Numerical Libraries for Science and Engineering 30

Distributed SuperLU: Performance Highlights

• Uses static instead of dynamic pivoting to be as scalable as Cholesky
• Performance on a 512 processor Cray T3E

• 10.2 Gflops for MIXING-TANK, fluid flow, n = 29957,
nonzeros/row = 67

• 8.4 Gflops for ECL32, device simulation, n = 51993,
nonzeros/row =  7.3

• 2.5 Gflops for BBMAT, fluid flow, n = 38744, nonzeros/row = 
46 (20% parallel efficiency)

• Used to solve open Quantum Mechanics problem
(Science, 24 Dec 1999)
• n = 736 K on 64 PEs, Cray T3E in 

5.7 minutes
• n = 1.8 M on 24 PEs, ASCI Blue Pacific

in 24 minutes
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Selecting an Iterative Solver for Ax=b

Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods 
http://www.netlib.org/linalg/html_templates/Templates.html
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Iterative Solvers: Preconditioners

Construct a preconditioning matrix K such that Kx=b is 
much easier to solve than Ax=b and K is somehow 
“close” to A

• Incomplete LU decompositions
• Sparse approximate inverses
• Polynomial preconditioners
• Preconditioning by blocks or domains
• Element-by-element preconditioners
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Trilinos

• Trilinos is a multifaceted solver project
• Encompasses efforts in:

• Linear solvers
• Eigensolvers
• Nonlinear and time-dependent solvers
• Others

• Provides a common framework for current and future solver projects
• Specifically provides:

• A common set of concrete linear algebra objects for solver 
development and application interfaces

• A consistent set of solver interfaces via abstract classes (API)

http://www.cs.sandia.gov/Trilinos
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Trilinos: Concrete Solver Components

• Linear systems:
• Multi-level preconditioners (ML)
• Robust algebraic preconditioners (IFPACK)
• Complex solvers (Komplex)
• Block iterative methods (BGMRES, BLCG)
• Object-oriented C++ Aztec (AztecOO)

• Eigensystems:
• Scalable generalized eigensolver (ANASAZI)

• Nonlinear systems:
• Suite of nonlinear methods (NLS)
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Trilinos: AztecOO

• Aztec is the workhorse solver at SNL:
• Extracted from the MPSalsa reacting flow code.
• Installed in dozens of SNL applications.
• 800+ external licenses. 

• AztecOO leverages the investment in Aztec:
• Uses Aztec iterative methods and preconditioners.

• AztecOO improves on Aztec by:
• Using objects for defining matrix and RHS.
• Providing more preconditioners/scalings.
• Using C++ class design to enable more sophisticated use.

• AztecOO interfaces allows:
• Continued use of Aztec for functionality.
• Introduction of new solver capabilities outside of Aztec.
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Hypre

• Before writing your code:
• choose a conceptual interface
• choose a solver / preconditioner
• choose a matrix type that is compatible with your solver /

preconditioner and conceptual interface
• Now write your code:

• build auxiliary structures (e.g., grids, stencils)
• build matrix/vector through conceptual interface
• build solver/preconditioner
• solve the system
• get desired information from the solver

http://acts.nersc.gov/hypre
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Hypre: Interfaces

Data Layout
structured composite block-struc unstruc CSR

Linear Solvers
GMG, ... FAC, ... Hybrid, ... AMGe, ... ILU, ...

Linear System Interfaces

Multiple interfaces are necessary to provide “best” solvers and data layouts
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Hypre: Why multiple interfaces?

• Provides natural “views” of the linear system
• Eases some of the coding burden for users by eliminating 

the need to map to rows/columns 
• Provides for more efficient (scalable) linear solvers
• Provides for more effective data storage schemes and 

more efficient computational kernels 
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Hypre: Conceptual Interfaces

• Structured-Grid Interface (Struct)
• applications with logically rectangular grids

• Semi-Structured-Grid Interface (SStruct)
• applications with grids that are mostly structured, but with some 

unstructured features (e.g., block-structured, AMR, overset)
• Finite Element Interface (FEI)

• unstructured-grid, finite element applications
• Linear-Algebraic Interface (IJ)

• applications with sparse linear systems

Solvers Struct SStruct FEI IJ
Jacobi X
SMG X
PFMG X
BoomerAMG X X X X
ParaSails X X X X
PILUT X X X X
PCG X X X X
GMRES X X X X

System Interfaces
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Hypre: Setup and Use of Solvers

• Create the solver
 HYPRE_SolverCreate(MPI_COMM_WORLD, &solver);

• Set parameters
 HYPRE_SolverSetTol(solver, 1.0e-06);

• Prepare to solve the system
 HYPRE_SolverSetup(solver, A, b, x);

• Solve the system
 HYPRE_SolverSolve(solver, A, b, x);

• Get solution info out via conceptual interface
 HYPRE_StructVectorGetValues(struct_x, index, values);

• Destroy the solver
 HYPRE_SolverDestroy(solver);
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PETSc

• Portable, Extensible Toolkit for Scientific Computing
• What can it do?:

• Support the development of parallel PDE solvers
• Implicit or semi-implicit solution methods, finite element, 

finite difference, or finite volume type discretizations.
• Specification of  the mathematics of the problem

• Vectors (field variables) and matrices (operators)
• How to solve the problem?

• Linear, non-linear, and timestepping (ODE) solvers

http://acts.nersc.gov/petsc
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PETSc: Features

• Parallelism
• Uses MPI
• Data Layout: structure and unstructured meshes
• Partitioning and coloring

• Viewers
• Printing Data Object information
• Visualization of a field and matrix data

• Profiling and performance Tuning
• -log_summary
• Profiling by stages of an application
• User define events
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PETSc: Components
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PETSc: simple example

/*

See http://www-fp.mcs.anl.gov/petsc/docs/tutorials

*/

/* Program usage: mpirun ex1 [-help] [all PETSc options] */

static char help[] = "This is an introductory PETSc example that illustrates
printing.\n\n";

/*

Concepts: Introduction to PETSc;

Routines: PetscInitialize(); PetscPrintf(); PetscFinalize();

Processors: n

*/

#include "petsc.h"

int main(int argc,char **argv)

Argc and Argv are used to pass run 
time commands to PETSc and MPI
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PETSc: simple example (cont.)

{

int ierr,rank,size;

ierr = PetscInitialize(&argc,&argv,(char *)0,help);CHKERRA(ierr);

/*

The following MPI calls return the number of processes

being used and the rank of this process in the group.

*/

ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRA(ierr);

ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRA(ierr);

ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRA(ierr);

ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRA(ierr);

ierr = PetscPrintf(PETSC_COMM_WORLD,"Number of processors =

%d, rank = %d\n",size,rank);CHKERRA(ierr);

ierr = PetscPrintf(PETSC_COMM_SELF,"[%d] Jumbled Hello

World\n",rank);CHKERRA(ierr);

ierr = PetscFinalize();CHKERRA(ierr);

return 0;

}

Every PETSc program should begin with the 
PetscInitialize routine.

Prints a single message

Prints a multiple message

A program must always
end with PetscFinalize
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PETSc SLES: basic steps

• Define the linear system (Ax=b)
• MatCreate, MatSetValue, VecCreate

• Create the Solver
• SLESCreate, SLESSetOperators

• Solve System of Equations
• SLESSolve

• Clean up
• SLESDestroy
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PETSc SNES: basic steps

• Non-linear equations of the  form:
• F(x) = 0

• Unconstrained Minimization problems of the form:
• Min{f(x)}

• Create the Solver
• SNESCreate

• Create Matrices and vectors (like Jacobian matrix)
• MatCreate, MatSetValue, VecCreate

• Set evaluation routine and linear solver defaults
• Solve non-linear system: SNESSolve
• Clean up
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PETSc TS: basic steps

• Consider the ODE  ut = F(u,t), where u is a finite-
dimensional vector

• Create a TS object 
• TSCreate

• Select a solution method (Euler, BEULER, PSEUDO)
• Set initial time and time step

• TSSetTimeStep
• Set the total number of time steps:

• TSSetDuration
• Set the time step context
• Clean up
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PETSc: applications

Multiphase flow, 4 million cell blocks, 32 
million DOF, over 10.6 Gflops on an IBM SP 
(128 nodes), entire simulation runs in less 

than 30 minutes (Pope, Gropp, Morgan, 
Seperhrnoori, Smith and Wheeler).

Prometheus code (unstructured meshes in 
solid mechanics), 26 million DOF, 640 

nodes on NERSC’s Cray T3E (Adams and 
Demmel).

The parallel version of M3d, a multi-level 3D plasma physics code developed at the Princeton 
Plasma Physics Laboratory (PPPL), makes extensive use of PETSc for parallelization and solution 
of an unstructured mesh problem. Recently, one of the members of the PPPL team stated that 
the parallelization of M3D “would have been very difficult without PETSc, and would have 
required several physicists to spend a significant amount of time reinventing numerical 
algorithms instead of doing physics.”
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Outline
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Eigenproblems: a brief tour

• Hermitian: Ax=λx, A* =A
• Generalized Hermitian: Ax=λBx, A* =A, B* =B>0
• Singular Value Decomposition: A=UΣ V*

• Non-Hermitian: Ax=λx, A* ≠A
• Generalized Non-Hermitian: Ax=λBx
• Nonlinear: (λ 2M+ λ D+K)x=0, P(λ)=0, …
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Selecting an Eigensolver for Ax=λλλλx

• Mathematical properties of the problem
• Desired spectral information

• Smallest eigenvalue?
• A few eigenvalues at the end of the spectrum?
• Eigenvalues somewhere inside spectrum?
• Most eigenvalues?
• Eigenvectors, invariant subspace, something else?
• Accuracy?

• Available operations and their costs
• Store and manipulate full matrix
• Solve (A-σI)x=b, or just Ax=b
• Multiply Ax and ATx, or just Ax

Bai, Demmel, Dongarra, Ruhe and van der Vorst, Editors, Templates for the solution of 
Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, 2000.
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Summary of Algorithms for Hermitian Problems
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Some Eigensolver Implementations

• Subspace Iteration
• EA12, EB12 (www.cse.clrc.ac.uk/Activity/HSL)
• PACDYN (pacdyn@cepel.br)

• Symmetric Lanczos
• laso, lanczos and  lanz (www.netlib.org)
• BLZPACK (www.nersc.gov/~osni)
• EA15, EA16 (www.cse.clrc.ac.uk/Activity/HSL)

• Nonsymmetric Lanczos
• ABLE (Bai, Dai, Ye)
• MSC/Nastran (Komzsik)

• Arnoldi
• ARPACK (www.caam.rice.edu/software/ARPACK, eigs in Matlab)
• EB13 (www.cse.clrc.ac.uk/Activity/HSL)
• ARNCHEB (www.cerfacs.fr/algor/qualitative)

• Jacobi-Davidson:
• JDQR (www.math.uu.nl/people/vorst)
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Conventional Performance Tuning

• Motivation: performance of many applications dominated by a few 
kernels

• Vendor or user hand tunes kernels
• Drawbacks:

• Very time consuming and tedious work
• Even with intimate knowledge of architecture and compiler, 

performance hard to predict
• Growing list of kernels to tune (example: new BLAS standard)
• Must be redone for every architecture, compiler
• Compiler technology often lags architecture
• Not just a compiler problem: 

• Best algorithm may depend on input, so some tuning at run-
time.

• Not all algorithms semantically or mathematically equivalent
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Automatic Performance Tuning

• Approach: for each kernel
1. Identify and generate a space of algorithms
2. Search for the fastest one, by running them

• What is a space of algorithms?
• Depending on kernel and input, may vary

• instruction mix and order
• memory access patterns
• data structures 
• mathematical formulation 

• When do we search?
• Once per kernel and architecture 
• At compile time
• At run time
• All of the above
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Some Automatic Tuning Projects

• PHiPAC: www.icsi.berkeley.edu/~bilmes/phipac
• ATLAS: www.netlib.org/atlas
• XBLAS: www.nersc.gov/~xiaoye/XBLAS
• Sparsity: www.cs.berkeley.edu/~yelick/sparsity
• FFTs and Signal Processing

• FFTW: www.fftw.org
• Won 1999 Wilkinson Prize for Numerical Software

• SPIRAL: www.ece.cmu.edu/~spiral
• Extensions to other transforms, DSPs

• UHFFT 
• Extensions to higher dimension, parallelism
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Tuning pays off: PHiPAC
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Tuning pays off: FFTW
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The ACTS Toolkit

• Advanced Computational Testing and Simulation
• Tools for developing parallel applications

• developed (primarily) at DOE Labs
• separate projects originally
• 20 tools

• ACTS is an “umbrella” project
• leverage numerous independently funded projects
• collect tools in a toolkit

http://acts.nersc.gov
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ACTS: Project Goals

• Bring software packages together into a “toolkit”
• Make the software interoperable
• Provide consistent application interfaces
• Promote general solutions to complex programming needs
• Promote code reusability
• Enable large scale applications
• Long-term support for experimental software
• Outreach and dissemination

acts-support@nersc.gov http://acts.nersc.gov
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What needs to be computed?
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What codes are being developed?

Global Arrays

Parallel programs that use 
large distributed arrays

Operations with grids 
for PDE applications

Scripting interface 
for C++ numerics

Expression 
templates for C++

Infrastructure 
for distributed 

computing

Interactive 
visualization

Coupling distributed 
applications

Performance analysis 
and monitoring

Overture
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ACTS: Lessons Learned

• There is still a gap between tool developers and application 
developers which leads to duplication of efforts.

• The tools currently included in the ACTS Toolkit should be seen as 
dynamically configurable toolkits and should be grouped into toolkits 
upon user/application demand. 

• Users demand long-term support of the tools. 
• Applications and users play an important role in hardening tools. 
• Tools evolve or are superseded by other tools. 
• There is a demand for tool interoperability and more uniformity in the 

documentation and user interfaces. 
• There is a need for an intelligent and dynamic catalog/repository of 

high performance tools. 
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More Information

• Workshops on the ACTS Toolkit: http://acts.nersc.gov/presentations
• NPACI All-Hands Meeting, San Diego, March 6, 2002, by Jim

Demmel, Tony Drummond and Osni Marques, 
http://acts.nersc.gov/presentations/AH2002
• ScaLAPACK - Parallel Linear Algebra Routines
• SuperLU - A Parallel Direct Solver 
• Survey of Parallel Direct Solvers 
• Automatic Performance Tuning
• PETSc - Portable, Extensible Toolkit for Scientific Computation 
• State-of-the-art Iterative Solver Libraries 
• Templates for the Solution of Eigenvalue Problems 

• Numerical Linear Algebra for High-Performance Computers, 
Dongarra, Duff, Sorensen and van der Vorst, SIAM 1998.


